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Abstract

The corrosion behavior of 2219 aluminum when exposed to seawater has been

characterized. Controlled corrosion experiments at three different temperatures (T =

30 C, 60 C and 100 C) and two different environments (seawater and 3.5 % salt

solution) have been designed to elucidate the initial stages in the corrosion process.

We find that 2219 aluminum is an active catalytic surface for growth of AI20 _, NaCI,

and MgO. Formation of AI203 if favored at lower temperatures, while MgO is favored

at higher temperatures. Visible corrosion products are formed within 30 minutes after

seawater exposure. Corrosion characteristics in 3.5% salt solution are different than

corrosion in seawater, casting doubt on the common practice of simulating corrosive

effects in seawater by substituting 3.5% salt solutions. Techniques utilized have

been: i) scanning electron microscopy (SEM); ii) energy dispersive X-ray spectroscopy

(EDX); and iii) Auger electron spectroscopy (AES). The results suggest that corrosion

may be minimized by utilizing a less reactive aluminum alloy, by rinsing the aluminum

as soon as possible after retrieval, and/or by using a protective coating on the 2219

alloy.
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I. Introduction

The goal of this research effort has been to characterize the corrosion behavior

of 2219 aluminum when exposed to seawater. Specifically, we have performed

controlled corrosion experiments at three different temperatures (T = 30 C, 60 C and

100 C) and two different environments (seawater and 3.5 % salt solution) to elucidate

the initial stages in the corrosion process. The experimental matrix is detailed below.

Techniques utilized have been: i) scanning electron microscopy (SEM); ii) energy

dispersive X-ray spectroscopy (EDX); and iii) Auger electron spectroscopy (AES). We

find that 2219 aluminum is an active catalytic surface for growth of AI203, NaCI, and

MgO. Formation of AI203 if favored at lower temperatures, while MgO is favored at

higher temperatures. Visible corrosion products are formed within 30 minutes after

seawater exposure. Corrosion characteristics in 3.5% salt solution are different than

corrosion in seawater, casting doubt on the common practice of simulating corrosive

effects in seawater by substituting 3.5% salt solutions. The results suggest that

corrosion may be minimized by utilizing a less reactive aluminum alloy, by rinsing the

AFT skirt as soon as possible after retrieval, and/or by using a protective coating on

the 2219 alloy.

Part II of this report discusses the general corrosive behavior of aluminum in

seawater, the formation of protective oxide on aluminum, and the influence of

environmental factors on aluminum corrosion. Part III deals with experimental

methods, apparatus details, and specimen preparation. Part IV details the AI-Cu alloy

microstructure and composition before corrosive exposure. Parts V-VII discusses the

results of specific corrosion experiments in seawater and 3.5% salt solution. A finSI

section offers suggestion for reducing corrosion.
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II. The CorrQsion Process

Corrosion may be defined as the chemical reaction of a metal with a nonmetal in

the surrounding environment, with the formation of compounds which are referred to

as corrosion products. Since metals are used for engineering applications because of

their unique mechanical properties (e.g., strength, hardness, and ductility), conversion

of the metal into a powdery, non-adherent compound, if allowed to proceed, will result

in the deterioration of the metallic component. The degree to which this occurs

depends on the rate of the corrosion reaction, which determines the extent of

conversion of the metal into corrosion products over a given period of time.

In addition to factors such as metal purity, environment, and the intrinsic nature

of the material, the corrosion product is an important factor in controlling the rate of

corrosion. For example, while metallic zinc is less stable than metallic iron, it is more

resistant to corrosion in a number of enviroinments. This is explained by the fact that

the corroslon products of Zn are more protective than those of Fe, and this

phenomenon applies even greater to metals such as A[, Ti, and Ta, which, although

thermodynamically highly unstable, form very protective films of metal oxide.

The role of the corrosion product in acting as a protective barrier can be

illustrated by comparing the high-temperature oxidation of iron with its corrosion in an

oxygen-containing aqueous solution such as water. It is well-known that heating iron

in air results in the formation of temper coloration (blue). This is due to the formation

of a transparent film of oxide.

To give a common example, the rusting of Fe is known to involve oxygen. Iron

does not rust in water unless 02 is present. Rusting also involves H20; iron does not

rust in oil, even if it contains 02, unless H20 is also present. Other factors such as the

pH of the solution, the presence of salts, contact with metals more difficult to oxidize

than iron, and stress on the iron can accelerate rusting.

The corrosion of iron is generally believed to be electrochemical in nature, A

region on the surface of the iron serves as an anode at which undergoes oxidation:

Fe(s)-*Fe *2(aq) + 2e ; E= = 0.44eV

The electrons so produced migrate through the metal to another portion of the surface

that serves as the cathode. Here oxygen can be reduced:
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O2(g) + 4H+(aq) + 4e-* 2 H20 ; E,,_ = 1.23 eV

Notice that H + is involved in the reduction of 02 . As the concentration of H ÷ is

lowered (that is, as the pH is increased), the reduction of 02 becomes less favorable.

It is observed that iron in contact with a solution whose pH is above 9-10 does not

corrode. In the course of the corrosion, the Fe +2 formed at the anode is further

oxidized to Fe .3. The Fe ÷-_ forms the hydrated iron(Ill) oxide known as rust:

4Fe+2(aq) + O2(g) + 4 H_O + 2xH20-* 2Fe2Os.xH20(s) + 8H+(aq)

Because the cathode is generally the area having the largest supply of 02, the

rust often deposits there. If you look closely at a shovel after it has stood outside in

the moist air with wet dirt adhered to its blade, you may notice that pitting has

occurred under the dirt but that rust has formed elsewhere, where 02 is more readily

available.

The enhanced corrosion caused by the presence of salts is usually evident on

autos in areas where there is heavy salting of roads during winter. The effect of salts

is readily explained by the voltaic mechansm: the ions of a salt provide the electrolyte

necessary for completion of the electrical circuit.

The presence of anodic and cathodic sites on the iron requires two different

chemical environments on the surface. These can occur through the presence of

impurities or lattice defects (perhaps introduced by strain on the metal). At the sites

of such impurities or defects the atomic level environment around the iron atom may

permit the metal to be either more or less easily oxidized that at normal lattice sites.

Thus these sites may serve as either anodes or cathodes. Ultrapure iron, prepared in

such a way as to minimize lattice defects, is far less susceptible to corrosion than is

ordinary iron.

Iron

to protect

applying a

protective

is often covered with a coat of point or another metal such as Sn, Zn, or Cr

its surface against corrosion. For example, tin cans are produced by

thin layer of Sn over steel. The Sn protects the iron only as long as the

layer remains intact. Once it is broken and the iron exposed to air and

water, tin actually promotes the corrosion of the iron. It does so by serving as the

cathode in the electrochemical corrosion. As shown by the following half-cell

potentials, iron is more readily oxidized than tin:
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Fe(s) --, Fe+=(aq) + 2e ; Eox

Sn(s) -* Sn+2(aq) + 2e ; Eox

= 0.44 eV

= 0.14 eV

The iron therefore serves as the anode and is oxidized.

Galvanized iron is produced by coating iron with a thin layer of zinc. The Zn

protects the iron against corrosion even after the surface coat is broken. In this case

the Fe serves as the cathode in the electrochemical corrosion because Zn is oxidized

more easily the Fe:

Zn(s) -* Zn+2(aq) + 2e ; Eox = 0.76 eV

The Zn therefore serves as the anode and is corroded instead of the Fe. Such

protection of a metal by making it the cathode in an electrochemical cell is known as

cathodic protection. Underground pipelines are often protected against corrosion by

making the pipeline the cathode of a voltaic cell. Pieces of an. active metal such as Mg

are buried along the pipeline and connected to it by wire. In moist soil, where

corrosion can occur, the active metal serves as the anode and the pipe experiences

cathodic protection.

The discussion above has centered on iron, but similar consideration hold for

most corrosion processes. To one final example, an aluminum can disposed of

carelessly beside the road will last much longer than a steel can. On the basis of the

standard oxidation potentials of AI (Eox = 1.66 V) and Fe (E=, = 0.44 V), one would

expect the AI to be much more readily corroded. The slow corrosion of AI is explained

by the formation of a thin oxide coating that forms on its surface. This protects the

underlying metal from further corrosion. Magnesium, which also has a large oxidation

potential, is similarly protected. The oxide coat on iron is too porous to offer similar

protection. However, when iron is alloyed with chromium, a protective oxide coating

does form. This is stainless steel.

A. The Surface Oxide on Aluminum

The properties of the aluminum oxide film provide aluminum and its alloys

with its resistance to corrosion. When a fresh aluminum surface is created a.nd

exposed to air, it oxidizes rapidly and acquires an adherent, protective film of

aluminum oxide (i.e., alumina) which tends to resist further oxidation. Aluminum

4
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oxide is relatively inert chemically, and it is on this inactivity that the good

corrosion resistance of aluminum depends. When the oxide film dissolves, as it

does in the presence of certain chemicals, dissolution of the metal also occurs

and the metal corrodes uniformly. Alternatively, when the film is damaged under

conditions that prevent normal self healing, localized corrosion ensues. This

corrosion may take the form of pitting or intergranular attack.

It is commonly believed that the oxide film is stable over a pH range of about

4.5 to 8.5, but several exceptions to this rule of thumb can be identified. For

_xample, aluminum is rapidly attacked in NaOH solutions not far from neutrality

(pH 7}, whereas it is resistant to NH3OH even at pH 13. Other exceptions

include the resistance of aluminum to concentrated nitric acid at pH 1 and to

glacial acetic acid at pH 5. The film, however, is dissolved in most strong acids

and alkalis. Hence, although aluminum alloys may be attacked outside the pH

range 4.5 - 8.5, this is usually not a problem under normal marine situations.

Normal air-exposed aluminum is covered by an amorphous aluminum oxide

(AI203) film which is believed to exist in various degrees of hydration

(AI203.xH20) depending on its relative humidity and temperature of formation.

When the aluminum is exposed to a moist atmosphere or is immersed in water,

the oxide film thickens, meaning the growth rate is much more rapid in water. In

both cases the rate of growth increases with temperature. The composition and

structure of the hydrated oxide films formed in water has been discussed by

Tragert [1]. There are six common crystalline forms of aluminum oxide: gibbsite

(o-AI20_.3H_O), bayerite (B-AI203.3H20), boehmite (o-AI20_.H20), diaspore (8-

AI203 • H20), gamma alumina (F-AI203), corundum (e-AI203). Of these, bayerite is

the usual corrosion product film that forms on aluminum in water at moderate

temperatures (T < 85 C).

The physical aspects of the oxide film on aluminum have been discussed by

Troutner [2] and by Hunter and Fowle [3]. When aluminum is exposed to air, a

duplex film is formed. This duplex film consists of a thin, protective, nonporous,

"barrier" film, immediately adjacent to the metal surface, and a more permeable

outer bulk film. The barrier film rapidly reaches a maximum thickness, which in

the case of oxidation in air is dependent on the temperature. The limiting barrier

thickness is the same for oxygen, dry air, and moist air. The barrier portion may

comprise most of the film formed in dry air, while in water the bulk film grows

much thicker. For example, after a short time in water at 300 C, the bulk film



may be 750 A thick, while the thickness of the barrier portion is only 35 _k.

_':,_ugh the barrier film controls the rate of oxidation in dry air, there is strong

_vidence that the rate of film growth in water is controlled by the thickness of

": ,:., bulk film. Differences in corrosion rates in different aqueous environments

::: ?_ar to be caused by differences in the solubility of the bulk film.

When aluminum is immersed in water, the oxide film thickens rapidly, at a

rate that increases with temperature, but even at 20 C it is many times more

rapid in water than in air. For example, Hart [4] reported a thickness of 55,000

_. for 1099 aluminum (99.99%) immersed in distilled water for 20 days. On the

other hand, Barker and Godard [5] found a thickness of 4800 _ for 1099

aiuminum immersed in alumina-saturated tap water for 22 days, suggesting that

water purity has a marked influence on the rate of film formation. The rate of

oxide growth decreases with time, and reaches a limiting thickness which

depends on the temperature, the oxygen content of the water, the ions present,

and the pH. The degree of hydration of the oxide film is dependent on the water

temperature. It has been suggested that the initial corrosion product is

aluminum hydroxide, AI(OH) s, which ages with time to become a hydrated oxide

or mixture of oxides, AI203.H20, but this is unconfirmed. What can be said is

that the growth of the oxide film on aluminum in water is complex and greatly

influenced by the temperature, the ions present, and the duration of exposure.

The bulk of experimental data suggest that the thickened oxide films developed

in pure water at room temperature increase the resistance of the surface to

corrosion. If such films can be developed before some corrosive conditions are

encountered, no corrosion will occur, whereas a freshly exposed surface with

only an air-formed film with be subject to corrosion.

B. Pro#erties of Seawater

The most characteristic feature of seawater is its high salt content. The salt

content of seawater is remarkably constant; the common average value used for

open ocean water is about 35 parts per thousand. In addition, the saline

composition, regardless of the absolute concentration, has virtually constant

proportions for the different major constituents (see Table I). However, some of

the other constituents of importance to the corrosion reaction such as the

percentage of dissolved oxygen and CO 2 do vary and, of course, properties such

as temperature, density, and electrical conductivity are not constant. The

temperature of seawater varies directly with latitude, and the range is from
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about -2 C at the poles to 35 C at the equator. The amount of dissolved gases

varies with temperature from about 8 ml/I for surface waters in the Arctic to

about 4.5 ml/I in the tropics. In seawater, the CO 2 is present as bicarbonate and

carbonate ions, as undissociated molecules of CO 2, and as H2CO 3 molecules

which are in equilibrium with each other in solution. The free C02 exerts a

partial pressure which is related to temperature and pH. When the pH of the

seawater rises at a constant temperature, C02 is released and enters the

atmosphere, the free C02 in solution falls, and the amount of carbonate

increases. One of the results of this complicated series of reactions is that

seawater is able to resist changes in its pH, i.e., it is a highly buffered solution.

Seawater is normally alkaline and the pH of the surface layers of the ocean,

where the water is in equilibrium with the CO 2 of the atmosphere, lies between

8.1 and 8.3. The presence of large quantities of hydrogen sulfide tends to lower

the pH value (the water becomes more acidic), while if there is considerable

photosynthetic activity of plants, which reduces the CO 2 content of the water,

higher pH values will be found (the water becomes more alkaline). The pH of

seawater is altered by variations in temperature. The usual effect of a rise in

temperature is to reduce the pH. In the ocean depths, the pH is usually below

8.0 because of the effect of pressure.
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Table I

Average Concentrations of the Principal Ions in Seawater"

(parts per thousand by weight)

Ion % by Weight

chloride, CI 18.980

sulphate, S04 2 2.649

bicarbonate, HCO_" 0.140

bromide, Br 0.065

borate, H2BO_ 0.026

fluoride, F 0.001

Anions Total 21.861%

sodium, Na ÷

magnesium, Mg +2

calcium, Ca ÷2

potassium, K ÷

strontium, Sr +2

Cations Total

10.556

1.272

0.400

0.380

0.013

12.621%

Overall total

salinity

34.482 %

• Source: Seawater: Its Composition, ProPerties, and Behavior. J. Brown,

Pergamon, 1989, 13. 30.

8
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C. General Corrosion Behavior of Aluminum in Seawater

The main practical interest in aluminum corrosion resides not in the corrosion

behavior of pure aluminum but in the performance of specific aluminum alloys.

Because the addition of alloying elements to aluminum affects its corrosion

resistance, it is difficult to make general statements concerning the corrosion

behavior of aluminum. Nevertheless, it is instructive to consider some

generalizations regarding the corrosion of aluminum.

1. Aluminum Alloys in General

A number of general papers have been written on the corrosion

resistance of aluminum alloys [6-17]. In general, aluminum alloys have good

corrosion resistance in the following environments: atmosphere, fresh

water, seawater, soils, and many chemicals. The corrosion resistance

derives from the adherent protective oxide film formed on the surface when

aluminum is exposed to oxidizing solutions. We will focus on its behavior in

seawater. Aluminum has been used in marine craft for decades. The first

use was by the Wellman Arctic expeditions of 1896 [18] in the form of

sledges and aluminum boats. About 1900, aluminum was used in the

superstructure of U.S. Navy torpedo boats [19]. Some of the early examples

suffered extensive corrosion due to unfavorable alloy composition or galvanic

corrosion, which were not well understood at the time, and this deterred

others from using aluminum alloys for marine construction for some time.

The use of aluminum was continued in the thirties by several ship

manufacturers. One early all-aluminum boat still in service is the Interceptor,

a patrol boat built in Canada in 1933. Since 1945, aluminum canoes,

rowboats, and pleasure craft have been produced by the tens of thousands

annually. For inland or marine service these are either left bare or painted,

depending on the appearance desired. Hundreds of AI-seagoing patrol boats,

torpedo boats, ferries, yachts, and hydrofoils have also been built with

aluminum hulls.

The most extensive published results of seawater corrosion tests on

aluminum alloys appears to be the work of Godard and Booth [20]. The

conclusion of this study was that the AI-Mg alloys (AA-5052, AA-5083, AA-

5086, AA-5154, and AA-5056) and AI-Mn alloys (AA-3003, AA-3004) are
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the most resistant to seawater. There is negligible thinning due to uniform

corrosion, and the bulk weight loss corrosion rate amounts to less than 0.2

mils per year, or 1/20 that for steel in seawater. The AI-Mg-Si alloys (AA-

6051, AA-6061, AA-6063) are somewhat less resistant to seawater. The

density of pitting is higher, the pits tend to be larger, and there may be a

tendency toward intergranular corrosion. Some blistering of the surface

a.of)ears to occur. However, there is no general thinning and the weight loss

corrosion rate is on the order of 0.5 mils per year.

During the war years, a divergence of opinion developed between Britain

and America as to the most suitable aluminum alloy for marine construction.

In the U.S., Alcoa developed the AI-Mg-Si alloy AA-6061, which contained

0.25% Cu. In England, on the other hand, there was a reluctance to usea

Cu-containing alloy, since Cu was known to reduce corrosion resistance.

Instead, AI-Mg-Si alloys (with Si in excess of that required to form Mg2Si),

for example AA-6053 were used, and binary AI-Mg alloys were introduced.

In America, the AI-Mg-Si alloy was rejected as being unduly subject to

intergranular corrosion. The argument has become largely academic, since

AI-Mg alloys are now preferred for use in seawater in all parts of the world.

The stronger aircraft alloys (AI-Cu and Al-Zn-Mg-Cu) are considered to

have poor corrosion resistance to seawater, and in the unprotected state a

0.250 inch plate will perforate in a few years. However, if protected by

cladding, metal spraying, or paint, these alloys exhibit excellent resistance to

seawater.

In summary, the available information clearly indicates that selected

aluminum alloys, especially the binary alloys containing magnesium, have a

high degree of resistance to corrosion by seawater, and that in the absence

of dissimilar metals, marine structures built from them will have a long life,

even if no corrosion-prevention measures are taken.

10
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2. The AI-Cu Alloy System

Typical wrought alloys in the AI-Cu system are AA-2011, 2014, 2024,

and 2219, which have the following compositions:

AA Number % Cu % Si % Mn % Mg

2011 5.5 0.4 ......

2014 4.4 0.8 0.8 0.5

2017 4.0 0.8 0.7 0.5

2024 4.4 0.5 0.6 1.5

2219 6.3 0.2 0.3 0.02

When metallurgists began to try to improve the strength of aluminum,

copper was one of the first alloying elements they employed, and AI-Cu

alloys were used before the turn of the century. These alloys had, in

general, poor resistance to corrosion, and it was not until about 1911 that

researchers found that the addition of about 0.5% Mg improved the

corrosion resistance and at the same time produced an age-hardened alloy

group which came to be known as "duralumin," of which AA 2017 is

typical.

Copper usually begins to show its influence in very small amounts; even

0.005% Cu has a detectable effect. The detrimental influence of 0.15% Cu

can easily be measured in laboratory corrosion tests. In general, AI-Cu alloys

have relatively poor corrosion resistance, and require surface protection

when used in corrosive environments. Without protection, they suffer

extensive corrosion in marine and industrial environments. When AI-Cu

alloys must be used, they are frequently cladded with pure aluminum and

heat treated to obtain the maximum resistance to corrosion.

In the heat-treated condition of Al-Cu alloys, the copper is almost entirely

in solid solution after quenching. When the alloy is aged at room

temperature, the Cu atoms gather as Guinier-Preston zones, and eventually

form intermediate pre-precipitation phases. Precipitation heat treatment

11
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produces further formation of these phases and some of the alloy transforms

into stable CuAI 2. Faulty heat treatment or subsequent reheating with

uncontrolled cooling may precipitate additional CuAI 2, which may

concentrate in the grain boundaries and give rise to a high degree of

susceptibility to intergranular corrosion and stress corrosion.

C. The Influenoe of Environmental Factors on Aluminum C0rrQsi0n

1. Water

Except in cases of high-temperature oxidation and gas-metal reactions,

there is no corrosion of aluminum unless water is present. In general, the

water must contain oxygen or air; if oxygen is removed, corrosion ceases.

Water is beneficial in some cases. Aluminum exposed to an aggressive

marine or industrial atmosphere will last longer if it is rained on frequently,

since the water dilutes and washes away corrosive residues of salt or soot.

2. Temperature

An increase in temperature has a strong accelerating effect on the

corrosion of aluminum unless the heat increases the rate of drying and thus

the period of wetness. For example, aluminum overhead transmission cables

which operate above atmospheric temperature usually last indefinitely due to

the drying effect.

3. Aoitation

Agitation of a corrosive liquid or gas in contact with aluminum usually

accelerates the rate of corrosion. Velocities greater than about 8 feet per

minute are, however, beneficial and may prevent pitting [21].

4. _urface-to-Volume Ratio

The surface-to-volume ratio of a metal has a marked influence on

corrosion. If the ratio is high, the metal deteriorates more rapidly than it

does when the ratio is low. For example, the rate of loss of tensile strength

of line wires exposed to the atmosphere increases as the diameter of the

wire is reduced [22]. This is because corrosion is a surface process, and

12
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more surface sites exposed to the reactant result in higher corrosion rates.

5. Surface Heat Caoacitv

The heat capacity of a metal surface has an influence on the corrosion

T_te, but it is unclear whether this is due to the thickness of the metal itself,

cr to the heat capacity of other objects to which the metal is affixed. For

example, if an unpainted aluminum-skinned aircraft is not maintained

properly, corrosion is more pronounced on the underside of the wing because

the underside of the wing has a low rate of heating and cooling. In the

morning, the underwing remains cold longer than the rest of the aircraft, and

retains condensation.

6. Metel Purity

It is generally true that the higher the degree of purity of aluminum, the

greater its corrosion resistance. The corrosion resistance of aluminum

declines appreciably as the purity drops from 99.998% to 99.98%. The

decline is much less as the purity drops from 99.95% to 99.7% and still less

as the purity drops from 99.7% to 99.0%. Obviously the nature of the

impurities and the corrosive medium affects the extent of degradation caused

by a given amount of contamination. These remarks apply to the impurities

normally present in commercial metal. Certain elements such as Mg (noted

above) increase the corrosion resistance.

7. AIlovinq Elements

The alloying elements used to fabricate most commercial aluminum alloys

are: Major Alloying Elements: Cu, Mg, Mn Si, Zn; Minor Alloying Elements:

Cr, Cu, Fe, Mn, Si, Ti. Those which increase the corrosion resistance of

aluminum are: Cr, Mg, Mn. Those which decrease the corrosion resistance

of aluminum are: Cu, Fe, Ni, Si, and Sn. Titanium appears to have little

influence on corrosion resistance and is usually added to act as a grain

refiner.

13
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II1. Experimental Procedures

A. Instrument Detail

Auger measurements were performed in a load-locked Kratos XSAM 800

surface analysis system equipped with a hemispherical energy analyzer. The

base pressure of this ion- and turbo-Dumped system is 1 x 10 "1° tort as read on

an uncalibrated, cold cathode gauge.

Auger spectra were excited by an electrostatically focused electron gun

containing a LaB 6 thermionic emitter whose energy was variable from 0-10 keV.

Objective, condenser, and stigmator lens voltages were varied by analog

potentiometers to form a focused beam at an incident angle of 60 ° to the

specimen normal. The sample working distance was 17 mm. Although

scanning and video capabilities are available in this system, the Auger electronics

were operated in the fixed-beam mode during the measurements. All Auger

spectra were recorded at 5.0 keV beam energy and 1.0/JA primary beam

current, measured with applied +90 V bias.

Ar ÷ ion sputtering of the 2219 aluminum surfaces was accomplished by a

differentially pumped Kratos Minibeam I plasma discharge ion source with

rastering and focusing capabilities. The beam voltage of this gun was variable

from 0-5 kV, regulated and resettable to 1%. The electron emission current was

variable from 5 to 25 mA, and feedback regulation to 1% ensured high current

stability during operation. Beam focus was controlled by adjustable voltages

applied to the electrostatic lens elements in the gun. The beam diameter was

roughly 0.1 mm at the sample working distance (25 mm). Both X- and

Y-deflection was possible which allowed for precise DC positioning of the ion

beam. A variable scan voltage provided a high frequency scan mode which

permitted a sputtered area of 1 cm 2 at the specimen position. Auger spectra

were taken in spot mode at a position near the center of the sputtered area. The

angle of incidence of the ion beam with respect to the surface normal was 55 °.

Auger spectra were collected by a Kratos Series 800, 127 mm radius double

focusing concentric hemispherical energy analyzer (CHA) equipped with an

aberration compensated input lens (ACIL). It is possible to select variable pass

energies, retard ratios, and magnifications by computer control. Auger spectra

were recorded in the fixed-retard ratio (FRR) mode with a retard ratio of 10.
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Such a retard ratio represents a compromise between sensitivity and resolution

and is appropriate for acquisition of survey spectra. The magnification of the

analyzer in the FRR mode was selected to collect electrons from the smallest

allowable (5 mm 2) area on the specimen (High Mag), obtained by optimizing the

lens functions of the 6 adjustable lenses in the ACIL. The AES energy resolution

for the slit combination (full open) used was measured to be 0.24% on clean

copper.

The detection system of our XSAM 800 consists of a single channel

multiplier and a fast response head amplifier. Detector output modes include

direct pulse counting and current detection with voltage to frequency (V-F)

conversion. Due to the large exciting currents used, all spectra were taken in

current detection mode.

The electron micrographs were taken with a Cambridge Stereoscan 200

scanning electron microscope. This ion- and turbo-pumped instrument has a

LaB 6 thermionic emitter with a maximum magnification of about 300,000 X. It

has a 3 lens electron optical column with four selectable aper{ures, and an

octapole stigmator with X- and Y-control. The maximum beam voltage is 30 kV,

and it is equipped with both backscattered and X-ray detectors.

EDX spectra were obtained by an EGG Ortek Series 5000 energy dispersive

wavelength spectrometer attached to the Cambridge SEM. This system

possesses a liquid nitrogen cooled lithium-drifted silicon Si(Li) X-ray detector with

a low-noise FET first stage which uses dynamic charge restoration. The detector

resolution is 148 eV and is protected by a Be window. A software controlled

A/D converter allows a wide variety of acquisition modes and data analysis.

Elemental compositions were determined by the ZAP II program, which is

discussed in $¢_nninq Electron Microscoov, 1982, I!1, pp. 981-993. The

program includes automatic background subtraction, peak overlap correction

including escape peaks, detector efficiency correction, and relative atomic,

absorption, and fluorescence corrections. It is insensitive to drifts in the

microscope beam current.
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B. Th_ Corrosion Experiment

The experimental setup used to study aluminum corrosion is shown in Figure

1. A standard Pyrex beaker was filled with roughly 200 ml of Gulf Coast

seawater, sealed with a rubber stopper, and placed atop a heater/stirrer table. A

thermometer and specimen holder containing the 2219 aluminum sample

protruded through the stopper. Temperatures were rigorously controlled during

the experiment by varying the heater current, and the seawater was gently

agitated during the exposure by the magnetic stirrer. The experimental matrix is

shown in the diagram on the following page.

The Gulf Coast seawater was obtained near Destin, Florida. The water

temperature on that day was measured to be 30 C (86 F), and its pH was

measured to be 7.6 with a digital pH meter calibrated against standard solutions.

The chemical composition of the seawater is not known. It is generally

recognized, however, that while the salinity of seawater varies from place to

place, the relative proportions of the major constituents are relatively

independent of location. The average concentrations of the principal

constituents were given previously in Table I. The average salinity of seawater

is about 35 grams of dissolved salts per kilogram of seawater.
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Fig. 1. Experimental apparatus used to study seawater corrosion.
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C. Materials and Sample Preparation

The 2219 AI-Cu alloy was supplied by Marshall Space Flight Center. Small

sections (1 cm X 1 cm X 1 ram) were cut from stock 2219 material used in

construction of NASA solid rocket booster assemblies. Roughly 20 pieces were

supplied to AU. The 2219 pieces were ultrasonically cleaned in solutions of

trichloroethylene, isopropyl alcohol, and DI water. The specimens were

subsequently exposed to seawater or salt solution and then loaded directly into

the Auger or SEM systems for analysis. The alloy surfaces were characterized

both before and after exposure to the corrosive environment.
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IV. The 2219 AI-Cu Alloy Before ExDOsure

Measurements were first made to identify the bulk and sL_rface impurities

inherent to the 2219 alloy material prior to seawater exposure, and to provide a

baseline for the controlled exposure experiments. Methods used were SEM

microstructural analysis, EDX (energy dispersive X-ray analysis), and Auger electron

spectroscopy (AES).

A. Bulk / EDX Analysis

An SEM micrograph of as received 2219 aluminum is shown in Figure 2.

The surface is uniformly pitted with 10-20 micron wide depressions which may

serve as active sites for corrosion. An EDX spectrum indicating the bulk "

composition of 2219 aluminum is provided in Figure 3. The 2219 aluminum

alloy has been described above; it is an AI-Cu alloy (86% AI, 5.8% Cu) with

small percentages of Ar (6%), P(3%), and Mn (0.04%). The EDX derived

composition is in qualitative accord with chemical composition data given in

metals handbooks for 2219 aluminum (see Table II). The EDX technique with

our current X-ray window cannot detect elements with Z < 11 (sodium). X-ray

dot maps of AI and Cu showed no unusualmicrostructuralfeatures. The lateral

distribution of AI and Cu is uniform throughout the 2219 alloy.

B. Surface / Auger Analysi_

An Auger spectrum of the surface of as received 2219 aluminum is shown in

Figure 4. The surface (defined as the top 30 ,&, of the aluminum) is primarily

aluminum oxide, with small quantities of several elements: Si, S, Cl, K, C, Ca,

N, F, Cu, Na, and Mg. Several of these elements are surface active (S, Na, CI,

K, Ca, F) and are characteristic of metal surfaces which have undergone

extensive handling. The C and N signals are usually observed in Auger spectra

of as received material and are due to atmospheric gas exposure. The Si appears

to be a surface contaminant while Cu is part of the alloy composition. That the

as received surface is aluminum oxide is shown by the i) lineshape and ii) energy

of the AI (KLL) 1396 eV feature. This structure is distinctive of oxidized

aluminum (see Figure 5). Compare the nonoxidized AI(KLL) feature in Figure 6.

Since quantitation in Auger spectroscopy is poorly developed, we are unable to

provide precise numbers for the amount of each surface contaminant present.
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Fig. 2. SEM micrograph of as received 2219 aluminum used in SRB

construction. The surface is uniformly pitted.
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Analytical Results

Weight Atomic

EJement Line % %

AI K 85.91 90.96

P K 2.54 2.34

Ar K 4.65 3.37

Mn • K 0.04 0.02

Cu K 5.94 2.62

LJ

<-0.007 keV Cursor = 403 ( 4.024 key ) = 4037 9.595 keV >

Fig. 3. EDX spectrum of as received 2219 aluminum used in SRB

construction. The aluminum is an AI-Cu alloy composition with bulk

contaminants of Ar, Mn, and P.
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Fig. 4: Auger spectrum of as received 2219 aluminum used in SRB

construction. The surface is oxidized with a number of contaminants

present due to handling.
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Figure 6 shows the Auger spectrum of the 2219 aluminum surface after 8

minutes of Ar sputter cleaning. The Ar was supplied by an rastered ion gun

operating at 3 kV energy. The sputter rate was 44 A/min as measured on a

standard of SiO 2. Assuming the sputter rates of Si02 and AI are equal, roughly

350 A of the surface have been removed. The oxide layer and surface

contaminants have been sputtered away and only signals from AI, O, C, and Ar

are found. The Ar present is due to implantation from the ion gun, while the

small amounts of C and 0 remaining appear to be incorporated into the

aluminum (EDX cannot detect these elements). The Cu is part of the bulk alloy

composition of 2219 aluminum, seen in EDX analysis. The AI(KLL) lineshape is

characteristic of elemental aluminum (cf. Fig. 5). Careful sputtering studies

showed the native oxide layer to be roughly 150 _ thick. After extensive °

sputtering (20-30 min), the Auger spectrum looked identical to that in Fig. 6,

verifying the EDX results for the bulk composition. No other elements were

observed within the detectability limit for Auger spectroscopy (0.1% of a

monolayer).
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Auger spectrum of 2219 aluminum after Ar sputter cleaning. The

bulk alloy composition is reached after about 150 A of sputtering.
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EDX

Composition

Table II

SRB 2219 Aluminum Bulk Composition

(wt %)

Handbook Composition "

(nominal)

AI - 85.9 AI 93.1

Cu - 5.8 Cu 6.3

Ar - 5.7 Ti 0.06

P 2.5 V 0.1

Mn 0.04 Mn 0.03

Zr - 0.18

"Metals Handbook, Volume 9, Metallography and Microstructures, 9th edition, p. 359
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V. The 2219 AI-Cu Alloy Exoosed to Seawater

A. Seawater Exposure at T = 30 C

An optical micrograph of the 2219 aluminum alloy before and after 2.0 hours

of seawater exposure at T = 30 C is shown in Figure 7. The temperature of T

= 30 C was chosen because it is roughly the temperature of Gulf seawater.

The corrosion is extensive. Visible (dull grey} discoloration of the aluminum

could be seen after 30 minutes of exposure, and at the same time, bubbles

developed over localized portions of the aluminum surface. Optical and SEM

microscopy (see Fig. 7(b)) shows that the surface is covered by corrosion

products in the form of discrete, localized mounds of second phase material. A

closer view is shown in Figure 8. Figure 8(a) is a high magnification optical

photograph of the corrosion products on the lower right-hand side of Fig. 7(b).

Figure 8(b) is an SEM micrograph of one of the localized mounds.

EDX analysis of one of the crystalline mounds (position 1 in Fig. 8(b)) is

shown in Figure 9. The mound is mostly AI, S, Na, and CI with small (<2%)

percentages of K, Ca, Cr, Mn, Fe, Ni, and Cu. It is questionable how much of

the AI signal originates from the mound and how much originates from the AI

substrate. This is because it the thickness of the material is unknown. The

incident electron beam penetrates roughly 1 micron of material per every 10 kV

of accelerating voltage, and since the analysis was carried out at 25 kV, this

means that the majority of X-rays originate from material located a couple of

microns under the surface. Further, it is possible to have substantial electron

scattering when performing EDX analysis on rough, irregular features. The

scattered electrons can excite X-rays in nearby (substrate) material and give the

impression that more aluminum is in the analysis feature than is real. Auger

analytical results discussed below resolves this situation.

EDX analysis of the exposed aluminum surface away from the corrosion

mounds is shown in Figure 10. The composition is nearly identical to the

unexposed bulk alloy composition. It is likely that reaction products are present,

but reside in a thin surface layer that are missed by the deep penetration of the

incident electron beam. This is indeed the case, shown by Auger analysis.
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(a)

(b)

Fig. 7. Optical micrographs of 2219 aluminum (a) before and (b) after 2.0

hours of seawater exposure at T = 30 C.
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(a)

(b)

Fig. 8. High magnification (a) optical and (b) SEM views of the T = 30 C

corrosion products.
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Anai.vticalResults

Weight Atomic
Line % %

Na K 2.51

fU K 54.28

S K 25.28

Cl K 13.56

K K 0.40

Ca K 0.72

Cr K 0.31

Mn K 0.04

Fe K 1.07

Ni K 0.31

Cu K 1.41

3.36

59.57

23.34

11.32

0.30

0.54

0.18

0.02

0.57

0.16

0.66 ................

• o

=.;

I__|

-< . ,hC,7 !:=-. 5'-'.'s_r = ;_.. t, --0. 007 t__=V ) = .:L, '-,._,,_=-_. keV i::-

Fig. 9. EDX spectrum atop a localized mound of second phase material

(position 1 in Fig. 8(b). The major elemental constituents are AI, S,

Na, and CI. The EDX technique with our current X-ray window

cannot detect elements with atomic number Z < 1 1 (Na).
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Analytical Results

Element

Weight Atomic

Lme % %

AJ K 83.73 89.37

P K 1.68 1.56

S K 1.68 1.50

CI K 2.06 1.6"7

Ar K 3.53 2.54

Ca K 0.03 0.02

V K 0.04 0.02

Mn K 0.25 O. 13

Fe K 0.09 0.05

Cu K 6.91 3.13

•.. - -_, ...............................

_1.. o - _ .°

. .

:U _1 t'-

I I

Fig. 10. EDX spectrum of the 2219 aluminum surface away from a corrosion

mound (position 2 in Fig. 8(b). The composition reflects the bulk

alloy composition with the addition of small quantities of S, CI, Ca, V,

and Fe.
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That much of the AI signal seen in EDX analysis originates from the corrosion

mounds rather than the 2219 substrate itself was found during Auger analysis of

the corrosion surface. If fact, Auger analysis makes it clear that AI is present in

the mounql_ in the form of aluminum oxide (AI203). Auger analysis atop the

localized mound (position 1 in Fig. 8) is shown in Figure 11(a). The Auger

_ignature is clearly that of AI203, shown both by the energies and shapes of the

AI Auger peaks. Auger analysis off to the side of the mound (position 2 in Fig.

8) is nearly identical to the Auger spectrum on the mound, with the addi'don of

Mg. We attempted to determine how thick the mound of AI203 was by sputter

etching through it. Based upon a sputter rate of 70 /_/m on SiO 2 (a common

calibration material), it took roughly 4.5 hours to drill through the mound,

corresponding to a thickness of - 1.9 microns. Since the spectroscopic

information from EDX originates from roughly the top 2-3 microns of the surface,

most of the elemSnts found in earlier EDX spectra on localized mounds originate

from the mounds themselves rather than from the 2219 substrate.

The specimen weight and size and the pH of the seawater was carefully

measured before and after the corrosion experiment. There was no measurable

difference in the size of the 2219 specimen, but the weight increased from

0.26870 g before exposure to 0.26875 g after exposure, reflecting the

precipitated aluminum oxide. The pH of the seawater also increased, from 7.6

(before) to 7.8 (after), reflecting a decrease in [H÷].

A puzzling feature of the Auger results is the relative absence of Na and CI in

the spectra. This appears to be true despite EDX analysis which showed

substantial concentrations of these elements on the reacted surfaces. What

happened to the Na and CI?

The Na and CI are indeed part of the reaction products, but these elements

are difficult to observe in Auger spectroscopy due to the phenomenon of

electron stimulated desorption (ESD). ESD is commonly observed in electron

spectroscopy on fluorinated and clorinated surfaces. It makes detection of CI, F,

etc. difficult because CI present on the surface desorbs from the surface (due to

the interaction with the probing electron beam) before it can be detected.

ESD effects on seawater exposed 2219 surfaces is observed in Figure 12.

This figure shows an Auger spectrum from the T = 100 C surface (discussed

ahead; cited here for illustrative purposes only)which EDX analysis showed to
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Fig. 1 1. Auger spectra (a) atop and (b) beside the localized mound in Figure 8

(see positions 1 and 2 in Fig. 8). The signatures are those of AI203

and MgO. The mounds appear to be primarily AI:03 while the

adjacent areas are both AI203 and MgO. The specimens were Ar

sputtered for 10 minutes beforehand to remove traces of adsorbed

residual atmospheric gases.
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Fig. 12. A low current density Auger spectrum atop the T = 100 C reaction

surface (cf. Fig. 24 for a high current scan), illustrating the effects of

electron stimulated desorption on Auger spectra. Lower current

densities result in reduced CI desorption and a larger CI peak.
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contain substantial Cl, but at low voltage and current density which minimizes

the effects of ESD. The CI signal is clearly evident. Further evidence of ESD

phenomenon involves the diminution of the Cl Auger feature with scan time.

The magnitude of the CI Auger peak diminishes significantly with scan time. By

the time the S/N is sufficient in most spectra, the Cl has all desorbed. The moral

is clear: both EDX and AES are necessary for complete analysis of surfaces

exposed to seawater (chlorinated) solutions. Since most of the EDX signal

originates from beneath the surface, the effects of ESD in EDX spectroscopy are

minimal. The limitation of EDX, however, is that it cannot detect elements with

Z < 11 (Na) with our current X-ray window.

B. Seawater Exposure at T = 60 C

At higher temperature, the corrosion is similar to that observed at T = 30 C

(mounds are still observed) but with: i) increased growth of cubic crystals on

the surface; ii) raised metallic areas that are lifting away from the AI surface. An

optical micrograph of the 2219 aluminum alloy before and after 2.0 hours of

seawater exposure at T = 60 C is shown in Figure 13. Visible (dull grey)

discoloration of the aluminum could be seen after about 15 minutes of exposure,

and at the same time, bubbles developed over much of the aluminum surface.

Figure 13(b) shows that the corrosion products consist of localized, circular

mounds of growing second phase material in addition to a uniform film of

crystalline material covering the surface. The lifted areas could only be viewed

by stereo microscopy and are not shown. The (lighter) square areas near the

center of the specimen are where the electron beam rastered over the surface

before seawater exposure. Apparently, the surface/electron beam interaction

has altered the aluminum's corrosion characteristics.

High magnification SEM views after seawater exposure at T = 60 C are

shown in Figures 14 and 16. Figure 14 shows two areas of the surface where

growth of cubic crystalline material is extensive. An EDX spectrum atop one of

the cubic structures (position 1 in Fig. 14(a)) is displayed in Figure 15. The

crystal is composed primarily of AI, Na, and Cl. It is clear that the cubic crystals

are NaCI and it is likely that the corrosion of the AI is Catalyzed by the salt and

sulphate ions in seawater, similar to rust developing on a car in wintertime when

exposed to salt on an icy roadway.
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Fig. 1 3. Optical micrographs of 2219 aluminum (a) before and (b) after 2.0

hours of seawater exposure at T = 60 C.
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(b)

Fig. 14. High magnification SEM views of the T = 60 C corrosion products, in

a region where extensive growth of cubic crystals occurred.
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Analytical Results

Weight Atomic
Element Line % %

Na K 26.60 33.59

AJ K 32.41 34.90

S K 1.86 1.69

CI K 32.04 26.25

K K 0.58 0.43

Ca K 0.57 0.4_

Fe K 0.14 0.07

Cu K 5.80 2.65

..i_

Fig. 1 5. EDX spectrum atop one of the cubic structures (position 1 in Fig. 14).

The major elemental constituents are AI, Na, and CI.
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Figure 16 shows another section of the corroded surface showing a closeup

of the small localized moundlike structures. The center of the micrograph shows

growth structures consisting of several small cubes with four branching

dendrites extending from each corner. The catalytic ability of this surface to

form such structures is interesting.

Auger analysis atop one of the localized mounds (position 1 in Fig. 14(b)) is

shown in Figure 17(a). The signature is clearly that of AI203, shown by both the

energies and shapes of the AIAuger peaks. Auger analysis off to the side of the

mound (position 2 in Fig. 14(b)) is nearly identical to the Auger spectrum on the

mound, with the addition of Mg. The signature is clearly that of MgO, shown by

the shape of the Mg Auger peak (see Figure 18). These results are similar to the

case of T = 30 C seawater exposure, except with more MgO growth. Both

surfaces are covered with. AI203, NaCI, and MgO.

The specimen weight and size and the pH of the seawater was carefully

measured before and after the corrosion experiment. There was no measurable

difference in the size of the 2219 specimen, but the weight again increased from

0.26090 g before exposure to 0.26132 g after exposure, reflecting the

precipitated second phase material on the aluminum. The pH of the seawater

also increased, from 7.6 (before) to 7.8 (after). This was similar to the T = 30

C exposure case.

C. Seawater Exoosure at T = 100 C

A specimen of 2219 aluminum was then placed into boiling seawater for a

period of 2 hours. Visible (grey) discoloration of the aluminum was evident after

minutes. The percolating seawater at the boiling point prevented bubbles (which

were observed at T = 30 C and T = 60 C) from developing over the surface.

Optical and SEM microscopy shows that the surface is covered by crystalline

material which is less cubic in appearance than the case for T = 30 C and T =

60 C exposures. An optical micrograph of the 2219 AI alloy after seawater

exposure is shown in Figure 19. The backside corrosion is shown in Figure 20.

Figure 21 is an SEM micrograph of the backside corrosion products in an area

where the most extensive crystal growth occurred.
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(a)

(b)

Fig. 1 6. High magnification SEM views of the T = 60 C corrosion products, in

a region where small, localized moundlike structures are observed.

The growth of small cubic crystals is also observed, with four

dendrites extending from each corner.
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Fig. 17. Auger spectra (a) atop and (b) beside one of the localized mounds in

Figure 16 (see positions 1 and 2 in Fig. 16). The mounds appear to

be primarily AI203 while the adjacent areas are both AI203 and MgO.

Exposure at higher temperature favors formation-of MgO. The

specimens were Ar spu_ered for 10 minutes beforehand to remove

traces of adsorbed residual atmospheric gases.
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Fig. 18. Reference Auger spectrum for pure Mg and stoichiometric MgO [23].
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(a)

(b)

Fig. 19. Optical micrographs of 2219 aluminum (frontside) after 2.0 hours of

seawater exposure at T = 100 C. The view in (b) was taken at the

lower left side of the view in (a). Extensive growth of crystalline

material is evident, and a crystalline stringer is growing away from

the surface.

44 ORIGINAL PAGE IS
OF POOR QUALITY



(a)

(b)

• "_1 '" ol'_l" .,t,_ t ;3.1l _-_ " _f;

'#H,I ," _'}#:':i,',',""',:'#$,_5"_,¢.
¢ _ I :'I _'r -,'r .

/. _ ., '7 ") I' ' "', _,' .*

t'_'_ '@..!l'_._,,:.,?,t _.;_i_ l :,' _._

, • _. ...'*'!_ ",

_l__i." ' " ' ' i__i'.i.Ji _

i:_ -' U:..'.," _-._':t/','.,_',:.'.' t'"
.-.Vt ._'-,f ' _,-'_" ,,' ".': _r"
, ,',_:t ,". /'l ."'. t,._; 11 7/,
q,'" 5" l," _, • *, "_I_,","'£ .i"

" :i'- f ,', ,' . _' , _' ' ...... _1_ _
•, _"_.. i.: ,_ .,'_rat. _ _ .E . ,#,

_?.:.'I i . t :'. ,_,.,.,wt?_,!_,t_.

,._::,_:_,..__.,.'t:,'.a.9,,'_/_':11,:

,, ",rl, ,,,_i _V." _ ": '_" ""'_,'_

,_:,:p..,_,_.:,.._,_,_

Fig. 20. Optical micrographs of 2219 aluminum (backside) after 2.0 hours of

seawater exposure at T = 100 C. The view in (b) is a blowup of the

corrosion products.
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(a)

(b)

Fig. 21. High magnification SEM views of the T = 100 C corrosion products

in a region where extensive crystal growth occurred. The view in (b)

is a blowup of the region at P0sition 1 in photo (a). The corrosion

products are different in appearance (cf. Fig. 16) from the corrosion

products observed at T = 60 C.
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EDX analysis of two positions on the 2219 surface (positions 1 and 2 in Fig.

21(b)) is shown in Figures 22 and 23. The compositions are very similar at both

locations, consisting primarily of AI, Mg, and CI with small percentages of S, Si,

Cu, Ca, Mn, and K. What is surprising about the analysis is that no Na is

observed. Na was a major component of the crystalline material for the lower

temperature (T = 30 C and T = 60 C) seawater exposures. In fact, no Mg was

found in those instances. It appears that, despite its lower concentration in

seawater (see Table I), the Mg +2 ion in seawater becomes a major player in the

chemical reaction at high temperatures, while the role of Na + is dominant at

lower temperatures.

Auger analysis atop the corrosion products is shown in Figure 24. The

signature again shows AI203, seen by both the energies and shapes of the AI

Auger peaks. However, in theT = 100 C exposure, an even larger peak of Mg

is observed, also seen in EDXanalysis. The signature is clearly that of MgO.

The surfaces phases present after T = 100 C seawater exposure are therefore

stoichiometric MgO, AI203, and perhaps some NaCI, although clearly the growth

of MgO is favored at higher temperatures.

The specimen weight and size and the pH of the seawater was carefully

measured before and after the corrosion experiment. There was no measurable

difference in the size of the 2219 specimen, but the weight increased from

0.26276 g before exposure to 0.26346 g after exposure, reflecting the

precipitated second phase material on the aluminum. The pH of the seawater

also increased, from 7.6 (before) to 8.6 (after), reflecting a decrease in [H÷].

D.. Seawater Exposure Summary

SRB 2219 aluminum displays extensive formation of corrosion products after

only two hours of seawater exposure at temperatures T = 30 C and T = 60 C.

At the lower temperature (T = 30 C), the corrosion consists of localized mounds

of AI203 and Natl. At higher temperature (T = 60 C), much of the surface is

covered with NaCl and several areas of the alloy are beginning to lift away from

the surface. At T = 100 C, the presence of both AI203 and MgO are observed,

but growth of MgO is favored.
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Anal_ic, al Results

Weight Atomic

Une % %

AI K 37.52 39.16

Mg K 29Ag 34.13

C1 K 14.55 11.55

Si K 7.16 7.17

S K 6.16 5.40

Cu K 3.85 1.70

Ca K 0.62 0.44

K K 0.56 0.40

Mn K 0.09 0.05

..... ._.•. _ ? ............ . ..........................................................
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Fig. 22. EDX spectrum atop a large crystal of second phase material (position

1 in Fig. 21(a)). The major elemental constitutents are AI, Mg, and

CI. No Na is observed, in contrast to seawater exposures at T = 30

CandT = 60 C.
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Element

AnalyticalResults

Weight

line %

Atomic

%

Mg K 34.53
AI K 34.64

Cl K 14.13

Si K 5.96

S K 5.91

Cu K 3.45

Ca K 0.68

K K 0.58

Mn K 0.12

39.68

35.80

111

5.92

5.13

1.51

0.47
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Fig. 23. EDX spectrum atop the corrosion products at position 2 in Fig. 21 (a).

The major elemental constituents are Mg, AI, and CI. No Na is

observed, in contrast to seawater exposures at T = 30 C and T =

60 C.
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Fig. 24. Auger spectrum atop the T = 100 C reaction surface. Exposure at

higher temperature favors formation of MgO. The specimens were Ar

sputtered for 10 minutes beforehand to remove traces of adsorbed

residual atmospheric gases.
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Differences in the corrosion process for 2219 aluminum at different temperatures

may be characterized from four viewpoints: pH, weight gain, elemental composition,

and crystalline microstructure. We summarize the differences in Table II1. All

indications point to greater reaction and precipitation of second phase material with

temperature, as expected.

Table III

Differences in Seawater Corrosion Characteristics vs Temperature

Property Temperature

T = 30 C T = 60 C T = 100 C

Seawater pH Gain

AI Weight Gain (g)

Major Elements

Crystalline

Microstructure

+0.2 +0.2 +0.9

+ 0°00005 + 0.00042 + 0.00070

AI, Na, CI, S AI, Na, Cl, S AI, Mg, CI, S

Localized Extensive Extensive

Cubic Cubic Unknown
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Vl. The 2219 Al-Cu Alloy Exposeg 1;o 3.5% Salt SOlution

A. 3.5% Solt Solution Exposure at T = 30 C

In these experiments, a standard Pyrex beaker was filled with a 3.5%

salt water solution, and the mixture was heated to 30 C by a hotplate/stirrer.

The NaCI was obtained commercially (Fisher) and mixed with 200 ml of 20

megaohm DI water. A specimen of 2219 aluminum was then placed into the

salt solution for a period of 2 hours. Visible (grey) discoloration of the

aluminum was evident after minutes.

An optical micrograph of the 2219 aluminum alloy before and after 2.0

hours of salt solution exposure at T = 30 C is shown in Figure 25. The

corrosion products are extensive, and the presence of pit-like features are

visible. Dull grey discoloration of the aluminum could be seen after 30

minutes of exposure, and at the same time, bubbles developed over localized

portions of the aluminum surface. Figure 25(b) shows that the corrosion

products are primarily localized mounds of deposited second phase material.

A closer view is shown in Figure 26. Figure 26(a) is a low magnification

SEM photograph of the exposed surface. Figure 26(b) is a high

magnification photograph. EDX analysis of one of the round structures

(possibly where small a small bubble formed during exposure; in any case,

position 1 in Fig. 25(b)) is given in Figure 27. The pit interior is mostly AI

with small concentrations of P, CI, and Ar. Outside this feature (position 2 in

Fig. 26(b)), the composition is substantially the same, only with a bit more

CI, shown in Figure 28. Again, because the depth of the corrosion products

are unknown, it is difficult with EDX to determine how much of the signal

originates from corrosion products and how much originates from the

underlying 2219 substrate. Since the EDX composition is so close to the

EDX spectrum for the 2219 AI by itself, it is likely that most of the X,rays

originate from the substrate.
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(a)

(b)
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1

Fig. 25. Optical micrographs of 2219 aluminum (frontside) after 2.0 hours of

3.5% salt solution exposure arT = 30 C. Substantial localized

deposition of second phase material is observed.
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(b)

Fig. 26. SEM photographs of the T = 30 C salt solution exposed 2219

aluminum surface. The view in (b) is a blowup of one of the features

in (a). Cf. Figs. 7 and 8 to compare corrosion products in seawater

at T = 30 C.
54 C;;;G;i%_L PAGE IS

OF POOR QU,!!.;TY



.

Analv_Jcel Result s

Weight Atomic

Element Line % %

AI K 82.57 88.73

P K 2.16 2.02

C1 K 2.78 2.28

Ar K 4.65 3.37

V K 0.01 0.01

Mn K 0.27 0.14

Fe K 0.14 0.08

Cu K 7.41 3.38

<-0. ,307 key Cursor = 0 ( -0.007 keV ) = 0 9.595 keV >

Fig. 27. EDX spectrum inside one of the corrosion features created by 3.5 %

salt solution exposure at T = 30 C (position 1 in Fig. 26(b)). The

spectrum is similar to the 2219 alloy itself, with the addition of a

small amount of CI (cf. Fig. 3).
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Element

AnalytJcai Results

Line Weight Atomic

% %

AI K 80.41 84.85

P K 1.49 1.36

CI K 3.O8 2.47

Ar K 2.78 1.98

V K 0.04 0.02

Mn K 0.26 0.14

Fe K O.21 0.11

Cu K 6.90 3.O9

Ne K 4.83 5.98 .......................... I

Cursor = 338 ( 3.374 keV ) = 1489 9.595 keV >

Fig. 28. EDX spectrum alongside one of the corrosion features created by salt

solution exposure at T = 30 C (position 2 in Fig. 26(b)). The surface

next to the feature contains a larger signal of CI and the presence of

Na.
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Auger analysis atop one of the localized mounds (position 1 in Fig. 25) is

shown in Figure 29(a). The spectrum demonstrates that the major corrosion

product is Al203, shown by the energies and shapes of the AI Auger peak.

Auger analysis off to the side of the mound (position 2 in Fig. 26) is nearly

identical to the Auger spectrum on the mound, with the addition of more Na

and CI. The analyses were performed at low incident beam current to

minimize the effects of electron stimulated desorption (ESD), discussed

above. Accounting for this effect in Auger spectroscopy, and comparing

spectra taken by EDX, shows that the predominant reaction mechanism at T

= 30 C is growth of Al203 and NaCI.

The specimen weight and size and the pH of the salt solution was

measured before and after the exposure. There was no measureable

difference in the size of the 2219 specimen, and no measurable weight

change. Since there are obvious deposits of material on the surface, the the

material removed by pitting must be counteracted by the deposition weight

gain. The pH of the salt solution changed from 7.6 (before) to 8.9 (after) the

exposure.

B. 3.5% Salt Solution Exposure 81;T = 60 C

At T = 60 C, the corrosion is similar to that observed at T = 30 C.

There is again evidence of localized pitting, and the surface is covered by

second phase material. An optical micrograph of the 2219 aluminum alloy

before and after 2.0 hours of exposure at T = 60 C is shown in Figure 30.

Dull grey discoloration of the aluminum could be seen after about 15 minutes

of exposure, and at the same time, bubbles developed over much of the

aluminum surface. Figure 30(b) shows the extent of pitting and a hazy film

of material covering the surface.

A high magnification SEM view of the exposed surface is shown in

Figure 31. An EDX spectrum over the area-averaged view shown in Fig. 31

is displayed in Figure 32. The composition is roughly the same as for the T

= 30 C case, mostly AI, Na, and CI. Auger analysis atop the hazy film is

also shown in Figure 33. The Auger signature is that of AI20 _, shown by the

energies and shapes of the AI Auger peak. NaCI is also present on the

surface because it was observed in EDX, but ESD effects make it difficult to

observe. Accounting for this effect in Auger spectroscopy, and comparing
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Fig 29. Auger spectra (a) atop and (b) beside the localized mound in Figure

25 (see positions 1 and 2 in Fig. 25(b)). The Auger signature is that

of AI203, while EDX additionally showed Natl. The specimen was Ar

sputtered for 10 minutes beforehand to remove traces of adsorbed

residual atmospheric gases.
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Fig. 30. Optical micrographs of 2219 aluminum (frontside) after 2.0 hours of

3.5% salt solution exposure at T = 60 C. Substantial formation of

second phase material is observed.
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Fig. 31. SEM photograph of the T = 60 C corroded 2219 aluminum, showing

the typical appearance of the surface. Cf. Figs. 13 and 14 to

compare corrosion products in seawater at T = 60 C. There is less

growth of cubic material on the surface exposed to the salt solution.
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A naly'ucel Results

Weight Atomic

Element Line % %

AI K 79.20 83.96

P K 1.35

: CI K 4.80 3.86 :

: Ar K 2.32 1.66 :

: V K 0.04 0.02 :

Mn K 0.24 0.12 :

: Fe K 0.16 0.08 "

: Cu K 7.09 3.19 "

: Na K 4.80 5.96 :

: I

: i

: !

t

t

t

I

I

I

i

1.25 .....: .............. I

::"-0. 007 k_¢. _ G_rsof" = 0 ( -0.009 keV ) = 0 9,_9_ keU >

Fig. 32. Area-averaged EDX spectrum ov.er the view shown in Fig. 31. The

spectrum is similar to the 2219 alloy itself, with the addition of a

small amount of NaCI.
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Fig. 33. Area-averaged Auger spectrum over the view shown in Fig. 31.

Growth of AI203 and NaCI dominates, similar to the case at T = 30

C, despite the fact that NaCI is not observed in Auger spectroscopy.
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spectra taken by EDX, shows that the predominant reaction mechanism at

= 60 C is growth of AI203 and NaCI. This is similar to the reaction at T =

30 C.

T

The specimen weight and size and the pH of the salt solution was

measured before and after the exposure. There was no measureable

difference in the size of the 2219 specimen, but the weight increased from

0.26221 g before exposure to 0.26245 g after exposure, reflecting the

precipitated second phase material. The pH of the seawater also increased,

from 7.6 (before) to 8.0 (after).

C. 3.5% Salt Solution Exposure arT = 100 C

In boiling salt solution, 2219 aluminum suffers virtually no corrosion.

The surface looks the same before and after the exposure. Only at high

magnification are a few salt crystals observed in scattered locations on the

surface. Figure 34(a) shows an optical photograph of the surface, which

looked the same before and after the exposure. A high-resolution SEM

photograph is shown in Fig. 34(b). A few scattered salt crystals are

observed.

An EDX spectrum on and beside one of the crystals in Fig. 34(b) is

shown in Figures 35 and 36, proving that the crystal are salt. While the

crystals are salt, the material beside the crystals is predominantly AI,

reflecting the substrate. Auger analysis (not shown) verified that the

crystals were NaCI and the substrate was oxidized AI.

The specimen weight and size and the pH of the salt solution seawater

was measured before and after the exposure. There was no measureable

difference in the size of the 2219 specimen, but the weight increased from

0.25695 g before exposure to 0.26708 g after exposure, reflecting the

precipitated NaCI crystals. The pH of the solution also increased, from 7.6

(before) to 8.6 (after).

What is remarkable about this behavior is the lack of reaction. One

would expect from chemical kinetics that the corrosion rate would be faster

at elevated temperatures. Just the opposite behavior is observed. This

shows that simulating corrosion effects in seawater with a 3.5% salt
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Fig. 34. Optical and SEM micrographs of 2219 aluminum (frontside) after 2.0

hours of 3.5% salt solution exposure arT = 100C. The optical

photograph looks the same before and after the exposure. No

corrosion is observed. The SEM photo shows NaCI crystals scattered

over the surface.
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........... Element

AI

CI

Cu

Na

Si

Weight Atomic

Line % %

K 3.88 4.29

K 55.23 46.44

K 4.14 1.94

K 35.37 45.86

K 1.38 1.46

::;-O. _}._7 keV Cursor = 488 ( 4.8.-.*: keV ) = 120-- o =o_ _='ev >

Fig. 35. EDX spectrum atop one of the crystals appearing on the T = 100 C

exposed surface (position 1 in Fig. 34(b)). The crystals are NaCI.
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AI K 81.58

P K 1.47

C! K 2.30 1.85 :
Ar K 2.93 2.10 :
V K 0.11 0.08 :
Mn K 0.32 0.17 :

Fe K 0.19 0.10 :

Cu K 7.29 3.28 :

Ne K 3.78 4.70 :

Atomic ; I

% " I
: t
: I

86.39 : [

1,38 .................... t

: -0.00T k _==_,_ Cursor" = 0 ( -0.007 keV ) = 0 ,_._o_ keV ,

Fig. 36. EDX spectrum alongside one of the crystals seen in Fig 34(b). The

spectrum is similar to that for the 2219 alloy itself, with the addition

of small amounts of NaCl.
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solution is subject to considerable error. Previous tests on 2219 aluminum

at T -- 100 C showed considerable crystal growth for surfaces in seawater.

D. S_lt Solution Exoosure Summary

SRB 2219 aluminum was tested for corrosion resistance in a 3.5% salt

solution at temperatures of 30 C, 60 C, and 100 C. The corrosion is less

extensive at higher temperatures. At 100 C, it is difficult to perceive an

observable difference in the metal surface before and after the salt solution

exposure. At the lower temperatures, the corrosion consists primarily of

pitting and the growth AI203 and NaCI. Lower temperatures favor formation

of AI203. These results differ from 2219 exposure to seawater where

formation of MgO was also observed. Tl_e results show that it is not

possible to adequately simulate seawater corrosion on 2219 AI with a 3.5%

salt solution. This is contrary to what is commonly assumed in the literature.

VII. The 2219 AI-Cu Alloy 8fter Lonq-Term Seawater Exposure at T = 30 C

An optical micrograph of the 2219 aluminum alloy after 200 hours of

seawater exposure at T = 30 C is shown in Figure 37. The temperature of T =

30 C was chosen for the long-term exposure because it is roughly the temperature

of Gulf seawater. Extensive growth of second phase material covers the surface.

High resolution SEM micrographs of the surface are shown in Figure 38. The

streaks seen in photo (b) is due to charging--the deposited material is so thick and

insulating.

EDX analysis of regions on and off the second phase mounds is shown in

Figures 39 and 40. Since our previous experience with Auger spectroscopy has

shown that the growth features are AI203, MgO, and NaCI, we have assumed

these stoichiometries when calculating quantitative EDX compositions in order to

determine the amount of each compound present (despite the fact that the EDX

technique with our present X-ray window cannot 0). in doing so, we assume that

the EDX signal is originating entirely from the second phase mounds (a safe

assumption here, since the mounds are very thick). The EDX results do not suffer

from the effects of electron stimulated desorption (as seen previously in Auger

analysis) because most of the EDX signal Originates from under the surface).
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Fig. 37. Optical micrograph of 2219 aluminum after exposure to seawater for

200 hours at T = 30 C.
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(a)

(b)

Fig. 38. Two SEM views atop the 2219 aluminum after exposure to seawater

for 200 hours at T = 30 C. Micrograph (a) was taken at the right

side of Fig. 37, while micrograph (b) was taken at the left side of Fig.

37.
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Element

Weight Atomic

Line % %

Compound

Compound Weight %

N8

Cl

Mg

0

AI

S_

P

S

K 6.68 6.55

10.29 6.55

K 20.10 18.66

30.75 43.38

_, 19.69 16.48
K t .31 1.05

K 1.16 0.85

K 7.59 5.35

K 0.41 0.24

K 0.82 0.46

K 0.53 0.18

K 0.68 0.24

NaCI 1 6.97

MgO 33.32

AI2C _ 37.22

<-0. 007 key Cursor = 472 ( 4.714 keV ) = -2204 9.595 keV >

Fig. 39. EDX spectrum atop the localized mound in Figure 38(a). See position

1 in Fig. 38(a). The second phase material is mostly AI203, MgO, and

NaCI.
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Element

A n_dyCical Results

Weight

Line %

Atomic

%

AI K 80.23

Mg K 5.09

P K 1.73

S K 2.01

CI K 2.27

Ar K 2.27

Ca K 0.12

Fe K 0.24

Cu K 6.04

84.37

5.94

.59

.78

.81

.61

0.08

0.12

• 2.70

u

< -0. 007 key Cursor = 400 ( 3.994 keV ) = 15"73 9.595 keY >

Fig. 40. EDX spectrum off to the side of the localized mound in Figure 38(a).

See position 2 in Fig. 38(a). A thin film of precipitated A1203, MgO,

and NaCI is indicated, but the incident beam penetrates through it so

most of the detected signal is from the underlying 2219 AI substrate.
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The EDX composition of the second phase mounds (position 1 in Fig. 39)

shows that the large mounds are composed of (by weight %): 1/3 AI203, 1/3

MgO, 1/6 NaCI, and 1/6 other elements. EDX analysis off to the side of one of the

mounds (position 2 in Fig. 3) shows small amounts of Na, Mg, and CI, indicating

that growth of AI203, MgO, and NaCI has occured in a thin film that the incident

electron beam has penetrated. Since the film is so thin in this location, most of

the EDX signal at this position originates from the 2219 substrate and is mostly AI.

That a thin film of AI203, MgO, and NaCI exists on seawater-exposed specimens

was shown in previous Auger work.

The specimen weight and size and the pH of the seawater was carefully

measured before and after the exposure. There was no measurable difference in

the size of the 2219 specimen, but the weight increased from 0.26701 g before

exposure to 0.26823 g after exposure, reflecting the precipitated second phase

material on the aluminum. The weight gain of +0.00122 g is higher than the

weight gain of +0.00005 g during 2 hours of seawater exposure, showing that

more second phase material is precipitating with exposure time. The pH of the

seawater also increased by +0.22 which was roughly the same as the pH change

after 2 hours of seawater exposure, reflecting a decrease in [H"].

In summary, long-term (200 hours) exposure of 2219 AI to seawater at T =

30 C showed little fundamental differences from the case of short-term (2 hours)

exposure of 2219 AI to seawater at the same temperature. In both instances,

substantial formation of AI203, NaCI, and MgO is observed atop the alloy surface.

There is more precipitated material at the longer exposure, but no new growth

features are observed.
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Vlll. C0n_;lu_ions

It is not unexpected that the major corrosion products observed when

aluminum is exposed to seawater are AI_O= and NaCI. The presence of MgO on

seawater-exposed aluminum at high temperature is less expected but not

surprising. Each of these compounds have low Gibbs free energies of formation

and will form readily if the correct kinetic conditions exist.

The question arises whether this is all bad. The answer depends on how one

defines bad. As discussed above, the presence of an oxide layer on aluminum is

one of the primary ways it is protected against corrosion. In this sense, the oxide

layer is good because, once formed, it protects against further corrosion. From

other viewpoints however, (e.g., an asthetic viewpoint), the formation of lumps of

A]203 on formerly shiny aluminum may be undesirable.

The presence of pitting and lifting is more serious. If allowed to proceed

unchecked, these pitting and lifting will degrade the strength of the alloy and lead

to service failure and/or short life. In order to reduce such effects, the following

suggestions are offered.

There are seven basic approaches to the prevention of metallic corrosion,

listed in the approximate order of utility for protecting aluminum: 1) Choice of a

more resistant alloy; 2) Improvement in equipment design; 3) Cathodic protection

by use of cladding and sacrificial anodes; 4) Choice of metal coating; 5) Choice of

inhibitors; 6) Alteration of environment; and 7) Use of nonmetallic coatings (e.g.,

rubber). We will discuss each of these from the point of view of SRB corrosion.

A. Choice of Alloy

Workers who are experienced with aluminum alloy corrosion admit that

the most common problem in AI-Cu corrosion is the use of AI-Cu alloys in

corrosive environments without adequate protective measures. For example,

in cases where AI-Cu alloys would be expected to perform satisfactory, it

was found that the alloys had been damaged in some way in the service

environment. There are numerous examples of underframes in buses and

trucks, made of the AI-Cu alloy, which are softened for bending by heat

treatment with a blowtorch. Such pieces are corroded only in the heated

zone. It is possible that this corrosion mechanism may be occurring in 2219

73



j-

SRB applications due to the high temperatures within the booster. Steel

rivets driven hot through AI-Cu structural members cause blistering of the

aluminum alloy in corrosive atmospheres. Heating also causes precipitation

of CuAI 2 in the grain boundaries, with resultant development of intergranular

corrosion. A materials analysis of the AI-Cu alloy from a spent booster

would be helpful to clarify the corrosion mechanism.

A better choice of alloy may be the AI-Mg alloys which appear to offer

the best combination of strength and corrosion resistance, and are preferred

for structural purposes in corrosive environments. These alloys are widely

used, for example, in the construction of boats and ship superstructures,

especially AA-5052 and AA-5083 alloys. Cast alloys J and K both have

good resistance to corrosion, but alloy K, especially after aging in service,

begins to develop stress corrosion and should not be employed in a stressed

condition in a corrosive environment.

• L

B. Improvement in Eqvipmenl; Desiqn

The most common design failures encountered with aluminum structures

in service involve galvanic corrosion between rivets and the aluminum and

crevice corrosion, both of which are well understood and can be avoided.

Some general rules that apply are: 1) Select combinations of metals as close

together as possible in the galvanic series; 2) Use cathodic fastenings and

avoid combinations with an unfavorable ratio of anode to cathode area; 3)

Provide good electrical insulation of the two metals, by using gaskets, fibers,

sleeves; 4) If paint can be applied, always paint at least the cathode. If only

the anode were painted a break would give an unfavorable ratio of anode to

cathode area and lead to rapid attack at the break; 5) Install small

replaceable heavy sections of the anodic metal at joints if possible; 6) Make

the dissimilar metal contact out of the corrosive environment if possible; and,

7) Increase the thickness of the anodic metal. The scope of this project did

not include the investigation of galvanic corrosion.

C. Cathodic Protection

The NACE has published a paper which tentatively recommends certain

methods for the cathodic protection of aluminum in waters and soils [24]. It

is difficult to see how this could be applied to an SRB, but the reader may
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wish to consult this paper if interested.

D. Application of Coatinq8

Paint is usually applied to aluminum for esthetic reasons rather than for

the prevention of corrosion; however, it is difficult to imagine a paint which

would be able to withstand the hostilities of a SRB. Popular baked enamels

include vinyls and acrylics. A more feasible coating method would be to take

advantage of the ability of aluminum to oxidize. The thin oxide film present

on the surface of aluminum can be thickened roughly 500 times (to - 0.04-

0.08 mils) by immersion in various hot acid and alkaline solutions. The films

produced are mainly AI203, but frequently contain chemicals to render them

more corrosion resistant. Several proprietary chemical coatings exist; the

trade names are: Alodine (Amchem), Bonderite (Hooker), and Iridite (Allied

Research). Much thicker (0.3-1.0 mil) oxide films can be produced by

electrochemical treatment in certain solutions. Anodic films to prevent

corrosion of aluminum are commonly found on automobile trim and building

facades. The most common electrolyte used to anodize aluminum is H2SO 4

(1 5% concentration). Applying metallized coatings to aluminum has not

been widely used, primarily due to cost.

E. Use of Aluminum Inhibitors

The use of inhibitors to prevent the corrosion of aluminum has been

reviewed by Mears and Eldredge [25], Haygood and Minford [26], and

Roebuck and Pritchett [27]. Since inhibitors are typically used in

recirculating and/or small volume systems, and the ocean environment is so

vast, inhibitors will not be considered further here.

F. AI1;ergtion of the Environment

It is sometimes possible to alter the agressiveness of an environment by

altering it in one way or another. Since this is not possible in an ocean

environment, it will not be discussed further.
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G. The Effects of Rinsina

Since most of the corrosion products are AI203, NaCl, and MgO, we

wanted to see if the effect of rinsing the aluminum specimens with a high

pressure stream of DI water, similar to the way in which people who live in

northern climates rinse salt off their cars in winter to retard corrosion. It

does appear to be possible to rinse some of the corrosion products off the

2219 AI with a jet of water. This was observed when wesubjected the

corroded 2219 AI specimen to a jet spray of DI water from a standard

laboratory spray nozzle for 5 minutes. It was found that some of the

crystalline material had vanished after the rinse (e.g., the crystalline stringer

seen in Fig. 19), but the bulk of the material remained. The was confirmed

in the weight loss of the 2219 sample before and after the rinse. Before the

rinse, the specimen weighed 0.26346 g. After the rinse, the specimen

weighed 0.26333 g, reflecting a 0.00013 g loss during rinsing. Hence,

rinsing an SRB immediately after recovery may help to retard the corrosion

process.
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